Extensions 1→N→G→Q→1 with N=C22×D17 and Q=C2

Direct product G=N×Q with N=C22×D17 and Q=C2
dρLabelID
C23×D17136C2^3xD17272,53

Semidirect products G=N:Q with N=C22×D17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D17)⋊1C2 = C2×D68φ: C2/C1C2 ⊆ Out C22×D17136(C2^2xD17):1C2272,38
(C22×D17)⋊2C2 = D4×D17φ: C2/C1C2 ⊆ Out C22×D17684+(C2^2xD17):2C2272,40
(C22×D17)⋊3C2 = C2×C17⋊D4φ: C2/C1C2 ⊆ Out C22×D17136(C2^2xD17):3C2272,45

Non-split extensions G=N.Q with N=C22×D17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D17).1C2 = D34⋊C4φ: C2/C1C2 ⊆ Out C22×D17136(C2^2xD17).1C2272,14
(C22×D17).2C2 = D17.D4φ: C2/C1C2 ⊆ Out C22×D17684+(C2^2xD17).2C2272,35
(C22×D17).3C2 = C22×C17⋊C4φ: C2/C1C2 ⊆ Out C22×D1768(C2^2xD17).3C2272,52
(C22×D17).4C2 = C2×C4×D17φ: trivial image136(C2^2xD17).4C2272,37

׿
×
𝔽